Introduction
Oksana Sirenko, PhD | Sr. Research Scientist | Molecular Devices
There is an increased need for expanding variety and complexity of cell-based assays for biologic research and drug discovery. Stem cell-derived cells and tissues become an increasingly attractive alternative to traditional in vitro and in vivo testing in pharmaceutical drug development and toxicological safety assessment. In this study, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to develop functional and morphological readouts for testing effects of different compounds in a multi-parametric assay format.
We performed automated cell imaging and analysis of iPSC-derived cardiac cells with the ImageXpress® Pico Automated Cell Imaging System to simultaneously determine calcium oscillation frequency, cell viability, cytoskeletal integrity, apoptosis, and mitochondrial function. Effects on cardiomyocyte beating frequency were characterized by measurements of calcium oscillations. Multiplexed assessment of different readouts provides additional insight into the mechanisms of action of various compounds. The methods were characterized using a set of known cardio-active drugs and selected cardiotoxic compounds.
Stem cell-derived cell models for compound screening
Stem cell-derived cardiomyocytes, as well as liver cells and neurons, provide very useful models for compound testing and toxicity assessment. Cardiotoxicity remains one of the main reasons for drug attrition during clinical trials. In addition, a significant percentage of cardiovascular diseases are reportedly due to environmental exposures. Accordingly, assay development for in vitro screening for potential toxic effects is an important area of investigation.
Methods
Instrument
Cell-based assays were performed using the ImageXpress Pico system in combination with CellReporterXpress™ Image Acquisition and Analysis Software. The imager provides four fluorescence channels, transmitted light, and time-lapse capability to enable automatic monitoring of complex biological responses in live cells.
Environmental control and time-lapse monitoring
The ImageXpress Pico system is equipped with an environmental control chamber which enables control and monitoring of temperature, CO2 and O2 content, and humidity. In combination with time-lapse imaging, the system is an efficient tool for performing live cell experiments under normal or hypoxia conditions.
Cell culture
Human iPSC-derived cardiomyocytes and the appropriate media were purchased from Cellular Dynamics International, Fujifilm Co. (CDI). Cells were plated into 384-well black clear bottom plates at a density of 10,000 cells per well and cultured as recommended by protocols from CDI. Treatment with compounds was performed for 24 hours.
Cell staining
To visualize Ca2+ oscillations, cells were loaded with calcium dye from the EarlyTox™ Cardiotoxicity Kit (Molecular Devices). To assess phenotypic changes, live cells were stained using a mixture of three dyes: viability dye Calcein AM (1 μM), mitochondria potential dye MitoTracker Orange (0.2 μM), and nuclear dye Hoechst (2 μM) (all from Life Technologies). For visualizing the actin cytoskeleton, cells were fixed with 4% formaldehyde (Sigma-Aldrich) and stained with AlexaFluor 488 (AF488) labeled phalloidin stain.
Assessing compound effects on calcium oscillations in cardiomyocytes
iPSC-derived cardiomyocytes are a very attractive in vitro model. They form a synchronously beating monolayer that can be used to reliably reproduce drug-associated cardio-physiologic phenotypes using a fast, kinetic fluorescence assay that monitors changes in intracellular calcium oscillations (Grimm et al. 2016; Sirenko et al. 2013). In this work, we adapted the calcium oscillation assay for the ImageXpress Pico system which combines time-lapse imaging with environmental control.
Cardiac cells spontaneously contracting and physiological movements can be observed using transmitted light imaging. Fluorescent imaging of intracellular Ca2+ fluxes was performed on the ImageXpress Pico system using environmental control, with images set to be acquired at 0.5 second intervals. After loading cells with calcium dyes, fluctuations of fluorescence intensity consistent with the mechanical contractions were observed. Figure 1A shows images taken by time-lapse acquisition of cardiac cells stained with calcium dye (EarlyTox Cardiotoxicity Kit).
Images were analyzed using the Cell Count module to detect cells and measure the average fluorescence intensity and average cell area. Calcium oscillations were visualized by plotting fluorescence intensity over time.
For evaluation of cardiotoxic effects, cardiomyocytes were treated with compounds, typically for 24 hours. Figures 1B and 1C present various examples of calcium oscillation traces generated after addition of tested compounds. Figure 1B represents a screenshot from an experiment testing six representative compounds in a dose-dependent manner (half-log changes in concentrations). Figure 1C shows enlarged representative traces for control, doxorubicin, and flecainide acetate conditions. Note the inhibition of calcium flux as an effect of doxorubicin and prolongation of flux with flecainide acetate treatment.
Figure 1. Measuring Ca2+ oscillations for iPSC cardiomyocytes. To measure Ca2+ oscillations, iPSC cardiomyocytes were stained with EarlyTox Cardiotoxicity kit then imaged over time in the FITC channel using the ImageXpress Pico system. (A) The panel above presents a series of images set to be acquired at 0.5 sec intervals. (B) Traces of calcium oscillations shown for increasing concentrations of indicated compounds. (C) Traces comparing control (0.1% DMSO, yellow), doxorubicin (1 mM, blue), or flecainide acetate (1 mM, purple) treatments.
Changes in the frequency of calcium oscillation, amplitude, and peak shapes were observed as a result of compound treatments. The number of peaks were counted manually. Peak counts were evaluated in duplicates and concentration-dependencies were plotted using SoftMax® Pro Software (Figure 2). EC50 values for inhibition of oscillation frequency were calculated from a 4-parameter curve fit.
Figure 2. Number of peaks (counted manually) plotted against compound concentration using a 4-parametric curve fit. EC50 values were calculated using SoftMax® Pro Software. Dose-dependent decreases in peak count shown for cisapride (purple), haloperidol (red), staurosporine (blue), imatinib (yellow), doxorubicin (dark green), flecainide acetate (green) treatments.
Assessing compound effects on cell viability and morphology
While the evaluation of changes in beating profiles is important for detection of functional effects, imaging also provides an essential complementary assay for monitoring morphological changes and cytotoxicity effects of compounds. Imaging and analysis provide important tools for characterization of multiple readouts including cell viability, characterization of cell shape, cell adhesion and spreading, cytoskeleton integrity, and mitochondria membrane potential.
We used a live cell staining protocol that enables a onestep addition of a mix of three dyes which eliminates the need for fixing cells or performing repeated wash steps. Calcein AM was used to identify viable, metabolically active cells and stain for whole-cell morphological features. Cell-permeable nuclear dye Hoechst was utilized to measure total cell counts and assess nuclear shape. MitoTracker Orange was used to detect cells with intact mitochondria and measure impact of tested compounds on mitochondria potential. Cells were stained after 24 hour incubation with compounds.
Images were taken with 10X or 20X objective, in three colors: DAPI for Hoechst nuclear stain, FITC for Calcein AM, and TRITC for MitoTracker Orange. A representative composite image is shown in Figure 3A. Images were analyzed using cell scoring or multi-wavelength cell scoring analysis modules. The analysis algorithm defines first the nuclei, then scores cells as positive or negative depending on the intensity of Calcein AM or MitoTracker Orange stains. The decrease in the number of positive cells, cell area, or staining intensities indicates toxicity effects. Figure 3B shows images of control and damaged cells, and the analysis masks for Calcein AM. EC50 values for different measurement values were derived from concentration-dependency plots and are shown in Table 1.
Figure 3. Image analysis of cardiomyocytes. (A) Image of cardiomyocytes (20X magnification) stained with viability dye Calcein AM, Mitotracker Orange dye for detection of mitochondria with intact membrane potential, and Hoechst nuclear dye (all from Thermo Fisher Scientific, 0.5 μM, 0.2 μM, and 0.5 μM, respectively). (B) Images and the analysis masks for multi-parametric analysis. iPSC-derived cardiomyocytes were treated with compounds for 24 hours and then stained with a mixture of Hoechst 33342, Calcein AM, and MitoTracker Orange CMTMRos. Images and analysis masks were compared for control cells and cells treated with 0.1 μM staurosporine and 10 μM doxorubicin. Cells were imaged with DAPI, FITC, and TRITC filters using a 10X Plan Fluor objective. The images show nuclei (in blue), Calcein AM stain (green), and mitochondria (orange). Images were analyzed using the Cell Scoring analysis module optimized for quantitation of Calcein AM positive cells or MitoTracker Orange positive cells. The analysis masks: light green—positive nuclei, red—negative nuclei, green—actin cytoskeleton. EC50 values are shown in Table 1.
EC50, μM | Peak rate | *Number of live cells | Total area of live cells | Average intensity (Calcein AM) |
---|---|---|---|---|
Cisapride | 0.017 | 0.22 | 0.13 | 0.15 |
Propranolol | 0.038 | ** | ||
Rotenone | 0.1 | 0.2 | 0.1 | 0.1 |
Haloperidol | 0.19 | |||
Staurosporine | 0.39 | 3.1 | 1.2 | 1.5 |
Digoxin | 0.61 | 10 | 9 | 11.2 |
Imatinib | 0.62 | 2.1 | 0.83 | 0.81 |
Flecainid acetate | 2.7 | |||
Sotalol | 3.4 | |||
Doxorubicin | 16 | 10 | 12 | 5.8 |
*Numbers of live cells (positive for Calcein AM stain), also the total area covered by live cells, and average intensities of Calcein AM stain were measured using image analysis.
**Blank cells indicate no effect at highest concentration tested (50 μM).
Table 1. Multi-parametric evaluation of compound effects on cardiac cells. EC50 values for inhibition of frequency of calcium oscillation are shown in comparison with EC50 values for cytotoxicity readouts related to cell viability, spreading, and intensity of Calcein AM signal.
Multi-parametric analysis of phenotypic changes allows detection of toxicity and also provides information about the mechanism of toxicity. Notably, most compounds demonstrated cardiac specific toxicity, with EC50 concentrations for inhibition of beat rate at least ½ log or lower than corresponding concentrations for cytotoxic effects as measured by a decrease in number of Calcein AM positive cells. In contrast, the cytotoxic effect of doxorubicin was observed at a similar concentration as the inhibition of the beating rate.
Conclusion
Our results demonstrate how a variety of assays can be utilized for quantitative screening of chemical effects in iPSC cardiomyocytes and enable rapid and cost-efficient multidimensional biological profiling.
介绍
Oksana Sirenko, PhD | Sr. Research Scientist | Molecular Devices
在生物研究和药物发现中,细胞检测方法 的多样性和复杂性日益增加。干细胞来源 的细胞和组织在药物开发和毒理学安全性 评估方面,已成为传统体内外试验的一个 越来越有吸引力的替代方法。在这项研究 中,我们使用人类诱导多能干细胞 (iPSC) 衍生的心肌细胞来开发功能和形态学读 数,以多参数检测形式测试不同化合物的 效果。
我们使用 ImageXpress® Pico 个人型高内 涵成像分析系统对 ipsc 衍生的心肌细胞进 行了自动细胞成像和分析,以同时确定钙 振荡频率、细胞存活率、细胞骨架完整 性、凋亡和线粒体功能。通过钙离子振荡 测定,研究了钙离子振荡对心肌细胞搏动 频率的影响。对不同类型记录结果的多参 数联合评估提供了对各种化合物作用机制 的进一步了解。这些方法使用一组已知的 心脏活性药物和选定的心脏毒性化合物进 行了表征。
用于化合物筛选的干细胞衍生细胞模型
干细胞来源的心肌细胞,以及肝细胞和神经元,为化合物测试和毒性评估提供了非常有用的模型。心脏毒性仍然是临床试验中药物应用障碍的主要原因之一。此外,据报道很大比例的心血管疾病是由于环境暴露造成的。因此体外筛选潜在毒副作用的试验开发是一个重要的研究领域。
方法
仪器
使用 ImageXpress Pico 系统结合 CellReporterXpress™ 图像采集和分析软 件进行基于细胞的检测。该成像仪器提供 四个荧光通道、透射光和延时功能,能够 自动监测活细胞中的复杂生物反应。
环境控制和延时监测
ImageXpress Pico 系统配备了一个环境控 制室,可以控制和监控温度、二氧化碳和 氧气含量以及湿度。该系统与延时成像相 结合,是在正常或缺氧条件下进行活细胞 实验的有效工具。
细胞培养
人 ipsc 来源的心肌细胞和合适的培养基购 自细胞动力学国际公司 (Cellular Dynamics International, Fujifilm Co.(CDI))。细胞 被铺在 384 孔的黑色透明底板上,密度为 每孔 10000 个细胞,按照 CDI 推荐的方案 进行培养。化合物处理 24 h。
细胞染色
为了观察 Ca2+ 振荡,细胞加载了 EarlyTox™ 心脏毒性试剂盒 (Molecular Devices)。为 了评估表型变化,使用三种染料的混合物 对活细胞进行
染色:活力染料 Calcein AM (1 µM)、线粒 体膜电位染料 MitoTracker Orange (0.2 µM) 和核染料 Hoechst (2µm) ( 均来自 Life Technologies )。为了观察肌动蛋白 细胞骨架,我们用 4% 甲醛 (Sigma) 固定 细胞,并用 AlexaFluor 488 (AF488) 标记 鬼笔环肽染色。
评估化合物对心肌细胞钙振荡的影响
ipsc 来源的心肌细胞是一个非常有吸引力 的体外模型。它们形成一个同步跳动的单 层膜,可以使用快速、动态荧光检测细胞 内钙离子振荡的变化,可靠地重现药物相 关的心脏生理学表型 (Grimm et al. 2016; Sirenko et al. 2013)。在本研究中,我们 将钙振荡法应用于将延时成像与环境控制 相结合的 ImageXpress Pico 系统。
利用透射光成像可以观察到心肌细胞自发 收 缩 和 生 理 运 动 。 利 用 环 境 控 制 , 在 ImageXpress Pico 系统上对细胞内 Ca2+ 流 进行荧光成像,每隔 0.5 秒采集一次图像。 用钙染料加载细胞后,观察到与机械收缩 一致的荧光强度波动。图 1A 为钙染色心肌 细胞延时采集的图像 ( EarlyTox 心脏毒性 试剂盒 )
利用细胞计数模块对图像进行分析,检测细胞并测量平均荧光强度和平均细胞面积。通过绘制荧光强度随时间的变化,可以观察到钙的振荡。
为了评估心肌细胞的毒性作用,我们对心 肌细胞进行化合物处理,通常处理 24 小 时。图 1B 和图 1C 显示了添加测试化合物 后产生的钙振荡痕迹的各种例子。
通过复合处理,观察了钙振荡频率、振幅 和峰形的变化。峰的数量是手工计算的。 使用 SoftMax® Pro 软件评估重复时的峰值 计数,并绘制浓度依赖关系图 ( 图 2 )。通 过 4 参数曲线拟合计算抑制振荡频率的 EC50 值。
图 1B 显示了以剂量依赖的方式 ( 浓度变化 半对数 ) 测试六种代表性化合物的实验截 图。图 1C 显示了对照、阿霉素和醋酸氟卡 尼条件下代表性的放大痕迹。注意阿霉素 对钙流的抑制作用和氟卡尼醋酸处理后的 钙流延长的效应。 A C 时间,秒 平均强度 时间,秒 化合物浓度 Peak count per min B 对照 星孢菌素 阿霉素 地高辛 索他洛尔 氟卡尼 普萘洛尔 平均强度 化合物浓度 图 3 心脏细胞的成像分析。(A) 心肌细胞的图像 ( 20 x 放大 ) 染色活细胞染料钙黄绿素,Mitotracker Orange 染料检测线粒体膜电位,赫斯特核染料 ( 来自 Thermo Fisher Scientific,浓度分别是 0.5 µM, 0.2 µM,和 0.5 µM )。(B) 多参数分析的图像和分析掩模。I-Cell 诱导的心肌细胞在 24 小时内接受了 化合物的处理然后用核染色剂 (Hoechst 33342),Calcein AM 和 MitoTracker Orange CMTMRos 染 色。图像和分析掩模比较了对照细胞和 0.1 µM staurosporine 及 10 µM 阿霉素处理的细胞。细胞用 DAPI、FITC 和 TRITC 用 10 xPlan Fluor 物镜成像。图像显示细胞核 ( 蓝色 ),Calcein AM 染色 ( 绿色 ), 线粒体 ( 橙色 )。使用细胞分类分析模块对图像进行分析,该模块优化了 Calcein AM 阳性细胞或有 丝分裂细胞橙色阳性细胞的定量。分析掩膜:浅绿色阳性核,红色阴性核,绿色肌动蛋白细胞骨架。 EC50 值如表 1 所示。
图 1 测量 iPSC 心肌细胞 Ca2+ 振荡。 为了测量 Ca2+ 振荡,iPSC 使用 EarlyTox 心脏毒性试剂盒对心 肌细胞进行染色,然后使用 ImageXpress Pico 系统在 FITC 通道中随时间成像。(A) 上面板显示一系 列图像,每隔 0.5 秒采集一次。(B) 所示化合物浓度增加时钙振荡的痕迹。(C) 信号痕迹对比对照 ( 0.1% DMSO,黄色 )、阿霉素 ( 1mm,蓝色 ) 或醋酸氟卡尼 ( 1mm,紫色 ) 处理。
通过复合处理,观察了钙振荡频率、振幅 和峰形的变化。峰的数量是手工计算的。 使用 SoftMax® Pro 软件评估重复时的峰值 计数,并绘制浓度依赖关系图 ( 图 2 )。通 过 4 参数曲线拟合计算抑制振荡频率的 EC50 值。
图 2 使用 4 参数曲线拟合,根据化合物浓度绘制峰数 ( 手动计数 )。 EC 值采用 SoftMax® Pro 软件计算。 西沙必利 ( 紫色 )、氟哌啶醇 ( 红色 )、星孢菌素 ( 蓝色 )、伊马替尼 ( 黄色 )、阿霉素 ( 深绿色 )、醋酸 氟卡尼 ( 绿色 ) 处理的峰值计数呈剂量依赖性下降。
评估化合物对细胞活力和形态学的影响
评价跳动曲线的变化对于检测功能效应是重要的,同时成像还提供了监测化合物的形态变化和细胞毒性效应的必要的补充检测。成像和分析提供重要工具描述多个方面的结果包括细胞的生存能力,细胞形状特征,细胞贴附和扩散,细胞骨架完整性和线粒体膜电位。
使用活细胞染色法,可以一步加入三种染 料的混合物,无需固定细胞或重复清洗步 骤。Calcein AM 被用来鉴定活的、代谢活 跃的细胞,并染色整个细胞的形态学特 征。使用可透的核染料 Hoechst 测量总细 胞计数,评价细胞核形态。 MitoTracker 橙色是用来检测细胞完整线粒 体和测量测试化合物对线粒体的影响潜 力。化合物孵育 24 小时后染色。 用 10X 或 20X 物镜,三种颜色的图像:DAPI 用于 Hoechst 核染色,FITC 用于 Calcein AM, TRITC 用于 MitoTracker Orange。 具有代表性的复合图像如图 3A 所示。图像 分析采用细胞分类或多波长细胞分类分析
模块。分析算法首先定义细胞核,然后 根据 Calcein AM 或 MitoTracker 橙色 斑点的强度将细胞分为阳性或阴性。阳 性细胞数量、细胞面积或染色强度的减 少表明毒性作用。图 3b 显示对照和受 损细胞的图像,以及 calcein AM 的分 析掩模。不同检测结果的 EC50 值来自浓 度依赖性结果,如表 1 所示。 表型变化的多参数分析可以检测毒性, 并提供有关毒性机制的信息。值得注意 的是大多数化合物显示特定心脏毒性, IC50 值浓度抑制跳动率 ½ log 或低于减 少钙黄绿素阳性细胞数量的影响细胞毒 性的浓度。与此相反阿霉素的细胞毒性 作用与抑制跳动速率的浓度相似。
图 3 心脏细胞的成像分析。。(A) 心肌细胞的图像 ( 20 x 放大 ) 染色活细胞染料钙黄绿素,Mitotracker Orange 染料检测线粒体膜电位,赫斯特核染料 ( 来自 Thermo Fisher Scientific,浓度分别是 0.5 µM, 0.2 µM,和 0.5 µM )。(B) 多参数分析的图像和分析掩模。I-Cell 诱导的心肌细胞在 24 小时内接受了 化合物的处理然后用核染色剂 (Hoechst 33342),Calcein AM 和 MitoTracker Orange CMTMRos 染 色。图像和分析掩模比较了对照细胞和 0.1 µM staurosporine 及 10 µM 阿霉素处理的细胞。细胞用 DAPI、FITC 和 TRITC 用 10 xPlan Fluor 物镜成像。图像显示细胞核 ( 蓝色 ),Calcein AM 染色 ( 绿色 ), 线粒体 ( 橙色 )。使用细胞分类分析模块对图像进行分析,该模块优化了 Calcein AM 阳性细胞或有 丝分裂细胞橙色阳性细胞的定量。分析掩膜:浅绿色阳性核,红色阴性核,绿色肌动蛋白细胞骨架。 EC50 值如表 1 所示。
EC50, μM | 峰值率 | *活细胞数量 | 活细胞总面积 | 平均荧光强度 (Calcein AM) |
---|---|---|---|---|
西沙比利 | 0.017 | 0.22 | 0.13 | 0.15 |
普萘洛尔 | 0.038 | ** | ||
鱼藤酮 | 0.1 | 0.2 | 0.1 | 0.1 |
氟哌啶醇 | 0.19 | |||
星孢菌素 | 0.39 | 3.1 | 1.2 | 1.5 |
地高辛 | 0.61 | 10 | 9 | 11.2 |
伊马替尼 | 0.62 | 2.1 | 0.83 | 0.81 |
醋酸氟卡尼 | 2.7 | |||
索他洛尔 | 3.4 | |||
阿霉素 | 16 | 10 | 12 | 5.8 |
* 活细胞数量 ( Calcein AM 染色为阳性细胞 ),以及活细胞总面积,和图像检测分析得到的 Calcein AM 染色平均荧光强度。
表 1 心脏细胞复合效应的多参数评价。 抑制钙振荡频率的 EC50 值与细胞毒性读数 EC50 值进行了比较, 此 EC50 值与细胞活力、细胞扩散和钙调素 AM 信号强度有关。
结论
结果表明,多种分析方法可用于定量筛 选 iPSC 心肌细胞中的化学效应,并实现 快速和高性价比的多维生物图谱分析。